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ABSTRACT
Two of the major difficulties dealing with real-world prob-
lems nowadays are their increasing complexity and the de-
creasing available timespan to create “acceptable” solutions.
Due to this and the strongly decreasing costs of CPU-power,
non specialized (random) search heuristics gain more and
more importance. In this paper we analyze the behavior
of two very simple search heuristics on a strongly NP-hard
scheduling problem. Although both find feasible solutions
in pseudo-polynomial time, at least one of them is not able
to present an (1+ε)-approximation for arbitrary ε > 0 with
constant probability. Despite this, one of the two presented
search heuristics can even compete with a problem-specific
algorithm on a certain class of inputs and deliver solutions
convergent to optimality for increasing problem size.

Categories and Subject Descriptors: F.2.0 Theory of
Computation: Analysis of Algorithms and Problem Com-
plexity: General

General Terms: Algorithms, Performance, Theory

Keywords: Algorithms, Theory, Evolution, Scheduling

1. INTRODUCTION
Although the behavior of deterministic algorithms on ap-

proximation problems is well understood and investigated
for over 30 years, we know very little about the analysis of
the approximation capability of randomized search heuris-
tics like evolutionary algorithms. This seems to change in
recent years, maybe in reaction to the growing importance
of these algorithms.
We will have a closer look at the problem of minimizing

the makespan of a schedule for a set of jobs. Given n jobs
with integral processing times wi and a number m of iden-
tical machines, the task is to find an assignment of jobs to
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the machines to minimize the makespan, i. e., the maximum
time a machine is scheduled. The job assignment is done in
a non-preemptive manner, i. e., jobs cannot be interrupted
but have to run completely at a whole. Maybe this is one
of the most studied problems in scheduling theory. In 1966
Graham [7] introduced the probably first worst-case analy-
sis of an approximation algorithm by proving that his list
scheduling algorithm obtains a solution in polynomial time,
guaranteeing a makespan of not more than 2 − 1/m times
the optimal makespan. In 1976 Sahni [12] presented an algo-
rithm for the minimal makespan problem on two machines,
which obtained a makespan at most 1+ ε times the optimal
makespan in time O(n2/ε) for an arbitrary ε > 0. There-
fore, this algorithm is an FPTAS1 (see [10]). To achieve
the same quality on m machines he could only prove time
O(n(n2/ε)m − 1) for his presented algorithm. This still is
an FPTAS for a fixed number of machines, but since it’s ex-
ponential in m, it is not one if m is part of the given input.
Later on was proven that the minimal makespan problem
is NP-hard in the strong sense if m is part of the input
and hence, the will be no FPTAS unless P=NP (see [5]).
Therefore, the PTAS presented in 1987 by Hochbaum and
Shmoys [8] is optimal in some way. They obtained this re-
sult by reducing the minimum makespan problem to the
closely related bin-packing problem, where n objects with
sizes within the interval [0, 1] are given, and have to be put
into bins, so that the size of each bin does not exceed 1 and
the minimal number of bins is used.
Often (randomized) search heuristics are applied to NP-hard
problems, for which no adequate approximation algorithms
exist. This is done with the intention not to find the opti-
mal solution, but an approximate one. Nevertheless, almost
all results on the complexity of randomized search heuris-
tics (RSHs) are dealing with exact optimization. Doubtless,
RSHs like the Metropolis algorithm or Simulated Anneal-
ing (see [9]) are applied successfully on real-world problems.
Unfortunately, they are currently out of range of rigorous
analyses, i. e., without using simplifying models, on most
problems. To overcome this issue and to present rigorous
analyses of evolutionary algorithms Droste, Jansen and We-
gener developed analystic methods (see [3] and [14]). These
methods were applied successfully on the analysis of simple
evolutionary algorithms on a number of problems including
matching problems (Giel and Wegener, [6]) and finding min-
imal spanning trees (Neumann and Wegener, [11]). Based
upon these methods, Witt presented in 2005 an analysis of

1fully polynomial time approximation scheme
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the approximation capability of the (1+1)EA and RLS on
the minimum makespan problem for two machines ([15]). In
this case the problem is equivalent to an optimization vari-
ant of the PARTITION problem, and Witt was able to show
that these algorithms find a makespan 4/3 times the optimal
makespan in expected polynomial time, even on worst-case
instances. Nevertheless, both algorithms need exponential
time to create a solution which provides a makespan at most
4/3− ε time the optimal makespan for each ε > 0 with high
probability. By having a closer look at the average-case ap-
proximation time on certain input distributions he showed
that the algorithms find solutions, whose expected makespan
after a polynomial running time was convergent to optimal-
ity for increasing problem size. Moreover, not only the mean
values were considered, but he also showed that the corre-
sponding qualities of the presented solutions are obtained
with high probability.
Of course, one is interested in generalizing these results to
minimum makespan problems with more than two machines.
Unfortunately, even by using only three machines one is con-
fronted with “new issues”, which cannot occur by using two
machines. Based upon the cited paper we generalize the re-
sults to situations with a constant number of machines by
using a canonical enhancement of Witt’s fitness function.
To overcome the experienced difficulties we create a new fit-
ness function that is providing the evolutionary algorithm
more information and improve the results obtained in the
first step. We will also reveal a lower bound on the run-
ning time of our algorithm trying to achieve a makespan
(2k/(k+1)− ε) times the optimal makespan on k machines
for ε > 0. Finally, by using a third fitness function we are
able to transfer one of Witt’s average-case analyses to the
situation of three machines, asymptotically maintaining his
shown bounds for the running time.
In order to simplify the transfer and to make the reading of
this paper easier, we take a slightly different look at mini-
mum makespan scheduling problem, just like Witt did. We
regard it as a variant of the PARTITION problem. Now the
processing times are volumes of the n objects. Scheduling
the objects onto k machines means placing the objects into
k different bins. The task is to minimize the volume of the –
or better of any – fullest bin. We will refer to this problem
as the k-Partition-Problem for the rest of this paper.
To make the problem accessible to well-known evolutionary
algorithms we define this value as a function on the search
space S := {1, ..., k}n, assuming the i-th component xi of
a search point x to represent the location of object i. The
fitness function is defined by f(x) := maxi{wx(Bi)}, where
Bi denotes the i-th bin and wx(Bi) its volume with respect
to the search point x. Now we extend the (1+1)EA (e. g.,
[1]) to the search space S.

Definition 1. [(1+1)EA]

1. Initialize the search point x = (x1, ..., xn) uniformly at
random.

2. Create x′ by independently replacing each component
xi of x with probability 1/n by a value drawn uni-
formly at random from {1, ..., k}\{xi}.

3. If f(x′) ≤ f(x), replace x by x′.
4. Continue with Step 2.

We call each cycle of the infinite loop a generation and
will always refer to the current search point as x and to the
one created by the mutation in Step 2 as x′. This algorithm
is able to create every search point of {1, .., k}n within one
generation with a positive – but decreasing with growing
Hamming-distance – probability. With methods presented
by Droste, Jansen andWegener in [3], it is quite easy to show
that the expected running time until an optimal search point
is first found is always bounded above by (kn)n, thus, the
algorithm solves the given problem exactly in at most ex-
pected exponential time. This is in contrast to randomized
local search (RLS), which works for S as follows.

Definition 2. [RLS]

1. Initialize the search point x = (x1, ..., xn) uniformly at
random.

2. Create x′ by choosing one component xi of x uniformly
at random and draw its new value uniformly at random
from {1, ..., k}\{xi}.

3. If f(x′) ≤ f(x), replace x by x′.
4. Continue with Step 2.

Obviously, RLS does a random walk on the search space
by moving only to Hamming-neighbors. Thus, it can get
stuck in local optima. Both algorithms are sometimes called
hill-climbers because of their behavior2. Since we are only
interested in the fitness value of the current search point af-
ter t generations and in the expected number of generations
until a certain quality of the current search point is assured,
we do not care about the problem of finding an adequate
stopping criterion for the infinite loop, which is necessary
in application. Although the components of a search point
are no bits, we call them bits to stay close to the definition
in [1] and call mutations changing i bits an i-bit-mutation.
We want to provide a structural overview of this paper.

In this section we introduced the considered algorithms and
the NP-hard problem that will be examined, giving a rough
overview of the paper. Section 2 deals with a first attempt
to form an adequate fitness function and improve this at-
tempt by introducing a “better” fitness function. In Section
3 we will reveal a lower bound for the running time of our
algorithms, while Section 4 deals with their average-case be-
havior on a special class of inputs. This paper closes with
some conclusions in Section 5.

2. DEFINITIONS AND METHODOLOGY
Since we are going to talk about approximations, we need

a definition of the approximation ratio. We adopt the one
used in the literature (e. g., [13]).

Definition 3. [c-approximation] Let f : S → R be a fitness
function, which is to be minimized and c ≥ 1. A search point
x ∈ S is called a c-approximation iff f(x) ≤ fmin · c holds
for fmin denoting the optimal fitness value. Parameter c is
called the approximation ratio.

In the following we will show that both algorithms can reach
a particular approximation ratio by moving only to Ham-
ming-neighbors. Have a look at one of the fullest bins – say

2Normally, these algorithms are used for fitness functions
which are to be maximized.
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Bf – and one of the emptiest ones – namely Be. By trans-
ferring one object a with volume wa ≤ w∗ from Bf to Be

the volume of Bf shrinks by wa. If the difference in their
volumes is sufficiently large, the maximum of these two vol-
umes will also reduce by wa. Thus, we get an intuition that
it could be useful to bound the volume of the smallest ob-
jects in each fullest bin from above. For technical reasons,
w. l. o. g. we expect the volumes to be non-increasingly or-
dered, i. e., w1 ≥ w2 ≥ ... ≥ wn ∈ R+ for the rest of this
paper. The sum of all volumes is denoted by w.

Definition 4. [Critical volume] For k, n ∈ N with k ≥ 2,
a lower bound l on the optimal f -value for an instance W
of the k-Partition-Problem and 1 ≤ i ≤ k, we define the
critical volume of bin Bi filled with objects w

i
1 ≥ ... ≥ wi

s

by wr, where r := min{j|Pj
m=1 w

i
m > l}.

Let us return to the object a transferred from Bf to Be.
If for our current search point x, we have that f(x) > l +
((k − 1)/k)w∗ holds, wx(Bf ) > l + ((k − 1)/k)w∗ will be
correct and we will get wx(Be) ≤ (w − wx(Bf ))/(k − 1) <
(w− (l+ ((k− 1)/k)w∗)/(k− 1) ≤ w/k−w∗/k by applying
the pigeonhole-principle on w − wx(Bf ) and the remaining
k − 1 bins. Therefore, the volume of Be after the transfer
is at most l + ((k − 1)/k)w∗. Hence, the maximum of the
volumes of Bf and Be was either reduced by wa or is at
most l+((k− 1)/k)w∗3. This leads to the following lemma.

Lemma 1. Let W be as in Definition 4. Suppose that
from some time on, the critical volume of all bins with re-
spect to each current search point x is bounded above by w∗.
RLS [(1+1)EA] working on f reaches a search point x∗ with
f(x∗) ≤ l + ((k − 1)/k)w∗ after (k − 1)(kn)k−1 · �w/wn

[e(kn)k−1�w/wn
] more steps in expectation.

Proof. We use the method of fitness-based partitions
(see [14]). Therefore, we partition the search space into
fitness levels

L0 :=


x | f(x) ≤ l + k − 1

k
· w∗

ff
and for 1 ≤ i ≤ �w/wn
 :

Li :=
n
x | l + k − 1

k
· w∗ + (i− 1) · wn ≤ f(x) <

l +
k − 1

k
· w∗ + i · wn

o
.

Note that L0 consists of the search points which are good
enough for our purposes. Since the plus-selection of our two
RSHs accepts only successors which are not worse than their
parents, the RSH starts in one level Li and can only move
to an Lj with j ≤ i; thus, it moves toward L0.
If one shows that each level will be left in an expected

number of (k− 1)(kn)k−1 [e(kn)k−1] generations, our claim
will be proven, due to the additivity of the mean value. We
have already seen that a transfer of an (existing) object i
with a volume of at most w∗ from Bf to Be reduces the
maximum of their volumes by wi or the maximum drops
below l + ((k − 1)/k)w∗. However, it is easy to create ex-
amples in which the f -value does not change at all, because
of the existence of another bin as full as Bf . But by re-
peating our argumentation and transferring at most k − 1
objects in a row, we can diminish the f -value by at least
wn or it drops below the requested bound. So the RSH is

3We observe that this may not lead to a decrease of the
f -value due to the volumes of the remaining bins.

leaving the current fitness level if it has not already reached
L0. Since RLS is only able to perform at most one object
transfer per generation, it has to carry out these transfers
one at a time. The probability for one particular transfer is
1/(kn) and therefore for the at most k−1 sufficient transfers
at least (kn)−k+1. Now we can define phases of length k−1
and call them successful iff in each generation one of these
transfers is carried out. We already calculated the success-
probability for one phase and one successful phase assures
leaving the current fitness level, unless L0 is reached. Since
there are no requirements on the beginning of one phase,
this success-probability holds for each phase unless the cur-
rent fitness level is left. Hence, the expected waiting time
to leave one fitness level is bounded above by O((kn)k−1)
phases. This reveals the result for RLS, since one phase
takes k − 1 generations and at most �w/wn
 fitness levels
have to be left.
The proof for the (1+1)EA is even easier, because this

algorithm can change all needed k−1 bits within one gener-
ation with probability e−1(kn)−k+1 and therefore is waiting
at most e(kn)k−1 generations in expectation to leave the
current fitness level.

Now we have a powerful tool, helping us to prove the
following result.

Theorem 1. The introduced RSHs working on f find a
(2k/(k + 1))-approximation within O(wn2k−2/wn) genera-
tions in expectation.

Proof. We distinguish two cases. In the first case w1 ≤
w/(k + 1) holds. Hence, all volumes are bounded above
by this value and so the critical volumes of all bins are.
Therefore, we can apply Lemma 1 with l := w/k and w∗ :=
w/(k + 1). Now we conclude

f(x) ≤ l + k − 1

k
w∗ = l +

k − 1

k + 1
· w
k
= l · 2k

k + 1
.

Since l is a lower bound for the optimal f -value, the theorem
follows for this case.
In the other case w1 > w/(k + 1) holds. Now there are

big objects whose volume exceeds w/(k+1). We summarize
them in w1, ..., wa and call the remaining objects small. If
any bin B contains at least two big objects i and j, its
volume is at least wi + wj and obviously exceeds w/(k +
1)+max{wi, wj}. On the other hand, due to the pigeonhole-
principle there is a bin B′ of the remaining k−1 bins whose
volume is below (w − wi − wj)/(k − 1) ≤ (w − 2w/(k +
1))/(k − 1) = w/(k + 1). Hence, a transfer of i or j into B′

improves the f -value. Thus, there is a sequence of at most
k−1 accepted transfers separating the big objects from each
other. As long as the big objects stay separated and L0 is not
reached, there will be an object with a volume of at most
w/(k + 1) in each fullest bin Bf , otherwise, the optimum
would have been reached. Now we can adapt our previous
argumentation and the fitness levels Li and will see that at
most 2k − 2 appropriate transfers in a row are sufficient to
leave the current fitness level4. Hence, the introduced RSHs
stay only O((kn)2k−2) generations on each of the O(w/wn)
fitness levels in expectation. This gives the claim.

We only mention that by using these methods it can be
shown that the same approximation ratio is obtained by
4It takes at most k− 1 transfers to separate the big objects
and k − 1 transfers to reduce the volume of all fullest bins.
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these RSHs within O(wn/δ) generations in expectation with
δ denoting the minimal, positive difference producible be-
tween two bins by using the given objects. But the main
issue using the fitness function f is the loss of information:
compared to the 2-Partition-Problem considered in [15], it
only reveals information about the volume of one bin, but
not of all bins. Note, that there can be multiple fullest bins.
Hence, we take a look at their number. We have already
seen that a transfer of a particular object from the fullest to
the emptiest bin means an improvement of the fitness value
if there is just one fullest bin. Nevertheless, if there are
more than one fullest bin, the fitness value does not change
at all. Therefore, the above mentioned transfer is reversible
– note, that it would not have been reversible if the fitness
value had decreased. So, a random walk on the number of
fullest bins is possible. As long as i fullest bins exist we can
only assure that a special i-bit-mutation improves the fitness
value. The expected waiting time for a particular mutation
changing i components to occur is Ω(ni). This would not
adhere a (significant) performance loss if one showed that
the random walk “drifts” into the right direction, i. e., it
tends to decrease the number of fullest bins instead of in-
creasing it. Unfortunately, we cannot guarantee this. On
the contrary, there are situations in which the probability of
increasing the number of fullest bins is significantly larger
than the probability of decreasing its number. Hence, the
random walk slows down the optimization process. We will
deal with this problem in the next section by defining a new
fitness function, which is preventing this random walk to
occur.

3. WORST-CASE ANALYSIS
To compensate the “information loss” going from 2 to

k > 2 bins, we will establish a fitness function g with a
lexicographical-like ordering on its co-domain. To simplify
the definition, we first introduce a vectorial function ghelp.
For a search point x the function value ghelp(x) is a vector
consisting of the volumes of the bins in non-increasing order.
Given two search points x and x′ we say x′ is worse than
x – denoted by x′ � x – if and only if ghelp(x

′) > ghelp(x)
according to the lexicographical ordering.
Since the considered RSHs use elitist selection the exact

fitness values do not matter. Only their ordering is impor-
tant for selection. Therefore, it is easy to develop a precise
and formal description of g following the above statement.
But since it is only technical, we will omit it here. Let us
take a closer look at the transfer of one object with weight
wi from bin B to B′. We observe that the corresponding
search point x′ is accepted by the plus-selection in Step 3
iff wx(B) − wi ≥ wx(B

′) holds. We point out that this is
always correct, regardless of the position of B and B′ within
the ordering.

Lemma 2. Let W be as in Definition 4. Suppose that
from some time on, the critical volume of all bins with re-
spect to each current search point x is bounded above by w∗.
RLS working on g reaches a search point x∗ with f(x∗) ≤
l+((k−1)/k)w∗ after O(wn/wn) more steps in expectation.

Proof. We want to use the method of fitness-based par-
titions. RLS works on g but we measure the quality of our
approximation according to f . Hence, we need to establish
a connection between them first. We point out that for all
x, x′ we have f(x′) > f(x) ⇒ g(x′) > g(x). The main idea

using fitness-based partitions is to exploit the fact that the
fitness of the current search point cannot decrease during
the optimization process. We use the same fitness levels
as in the proof of Lemma 1. Since a worsening in the fit-
ness value according to f leads to a worsening in the fit-
ness value according to g, RLS still can move from Li only
to Lj with j ≤ i during the optimization process. Hence,
it is sufficient to show that each level is left within O(n)
generations in expectation to obtain our claim. Assum-
ing that RLS is on Level Li, each bin’s volume is bounded
above by l + ((k − 1)/k) · w∗ + i · wn according to the fit-
ness levels’ definition. Each bin exceeding the volume of
l + ((k − 1)/k) · w∗ + (i − 1) · wn is called critical, and all
critical bins with respect to the search point x are summa-
rized in C(x). The idea is that these critical bins prevent
the algorithm from reaching the next fitness level. Let us
focus on reducing the number of critical bins. Obviously,
transferring an object whose volume is bounded above by
w∗ from a fullest (and correspondingly critical bin) to the
emptiest bin, means reducing the number of critical bins by
one. If there is no chance of increasing its number by 1-bit-
mutations, i. e., by transferring one object, at most k − 1
of these transfers are sufficient to leave the current fitness
level. Hence, the claim is proven, due to the fact that RLS
“waits” O(n) generations for the above mentioned “reduc-
ing” transfer to happen.
Is there a chance to increase the number of critical bins?

Since only transfers from one bin to another bin with a vol-
ume at least wn smaller are accepted, the source-bin of the
transfer has to be critical; thus, this bin is not critical af-
ter the transfer anymore. At most one new critical bin was
created, letting the number of critical bins untouched or de-
creases it by one. Therefore, the number of critical bins
cannot be increased by 1-bit-mutations and the claim fol-
lows.

Theorem 2. RLS working on g finds a (2k/(k + 1))-
approximation relative to f within O(wn/wn) generations
in expectation.

Proof. Again, we are doing a case inspection according
to the volume of the largest object. If w1 ≤ w/(k+1) holds,
Lemma 2 implies the claim. In the other case, we again
have to deal with the big objects w1, ..., wa. We adopt the
fitness levels’ former definition and brought already forward
the argument that we can do this. Since L0 consists of the
search points which are good enough for our purpose, it is
sufficient to show that each Li is left within O(n) generations
in expectation. To obtain this, we apply our knowledge
gained by the proof of Theorem 1: there is a sequence of
1-bit-mutations separating the big objects from each other.
The problem we are confronted with is the existence of 1-
bit-mutations unifying two (already) separated big objects
in one bin. We manage this issue by “fixing” the positions
of all big objects for a certain period of time, except if their
transfer is needed for separation. Since one object is left
untouched within one generation with probability 1 − 1/n
and there are at most k big objects, the probability for their
hold-up within O(n) generations is bounded below by

„
1− k

n

«O(n)

= e−k·O(1) = Ω(1). (1)

On the other hand, the at most k − 1 separating 1-bit-
mutations occur within an expected number of O(n) gen-
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erations. This leads to the following definition of a phase.
The length of a phase is fixed to O(n) generations – the
exact number of generations can easily be determined later.
The phase is called successful iff the following conditions are
met conjointly.

1. As long as at least two big objects are within one bin,
they are separated by an 1-bit-mutation. This has to
be done within O(n) generations.

2. The big objects are not moved otherwise within one
phase.

3. RLS leaves the current fitness level Li within O(n)
generations.

We already saw that the first and the second condition are
met conjointly with at least constant probability, due to the
Markov inequality (e. g., [10]) and equation (1). Assum-
ing that they hold, the probability of the third one is also
bounded below by a positive constant, since O(n) gener-
ations are sufficient for this and the Markov inequality is
applicable. Altogether, one cycle through the phase is suc-
cessful with at least constant probability. Since there are
no requirements at the beginning of one phase – except not
being in L0, i. e., not having reached the desired approxima-
tion – we can create a sequence of phases, unless the current
fitness level is left. The expected number of phases until the
current fitness level is left, is bounded above by a constant,
since the success-probability is bounded below by a positive
constant. This gives the claim.

Next we want to investigate if it is possible for RLS to
reach a significantly better approximation ratio than 2k/(k+
1) on arbitrary instances. Therefore, we will have a look at
the following instance. For a small 0 < ε ∈ R there are k
big objects of volume wg := 1/(k + 1) − ε/(3k) and n − k
small objects of volume wk := (1/(k + 1) + ε/3)/(n − k).
We call this particular instance Wε and note that the opti-
mal f -value of 1/k can be reached by putting one big and
(n−k)/k small objects in each bin – assuming n to be chosen
to be a multiple of k. Although we are interested in provid-
ing a inapproximability result, we will state a quite simple
observation first, which will become useful in the proof of
the inapproximability result.

Lemma 3. Given k, n ∈ N and an instance of the k-
Partition-Problem with w1 = w2 = ... = wn. The expected
optimization time of the introduced RSHs working on g is
bounded above by O(n log n) generations.

Due to space limitations, we will omit this proof. But it
can easily be obtained by using fitness-based partitions and
transferring objects into the currently emptiest bin. We
remark that if each bin is additionally filled with one fixed
object of size at most w1, the RSHs will find a search point
x with ∀(i, j) : |wx(Bi) − wx(Bj)| ≤ w1 within the stated
time in expectation.

Theorem 3. Assuming n to be a multiple of k, the ap-
proximation time of RLS working on g for Wε for a (2k/(k+
1)−ε)-approximation with respect to f is infinite with at least
constant probability. Hence, the expected number of genera-
tions for this is unbounded from below.

Proof. First, we will construct a situation in which the
requested approximation ratio cannot be obtained. After
doing this, we will show that RLS reaches this situation
with at least constant probability. Let us have a closer
look at the approximation ratio. In order to achieve the re-
quested approximation RLS has to find a search point x with
f(x) ≤ 2/(k+1)−ε/k. As long as two big objects are within
one bin, the volume of this bin is at least 2/(k+1)−2ε/(3k);
hence, the desired approximation is not obtained. Now we
are showing that RLS reaches with at least constant proba-
bility a situation in which two big objects are within one bin,
and will not be able to leave it in future. We characterize
this search point x∗ through the following two conditions.

(C1) There are at least two big objects in B1 and at least
one big object in each bin B3 to Bk.

(C2) ∀i ≥ 2 : wx∗(B1)− wx∗(Bi) < wg.

Condition (C1) assures that the requested approximation-
ratio is not obtained. Since the difference between the vol-
umes of B1 and each other bin Bi is less than wg through
condition (C2), the big objects in B1 cannot be separated
in future, and RLS got stuck.
Now, we turn ourselves to the probability of RLS reaching

x∗. Therefore, we define a series of conditions whose fulfill-
ment is leading to the search point x∗. Then we will show
that RLS conjointly fulfills them with a probability, which
is bounded below by a positive constant. The first condition
is to start in the following situation x0: the big objects are
placed as demanded in x∗; additionally at least one small
object has to be in each bin B1, B3, ..., Bk. Since we only
arrange the positions of 2k − 1 objects and each object is
placed into a particular bin with probability 1/k after the
random initialization, this constraint holds with probability
at least (1/k)2k−1 = Ω(1).
Under the assumption that the RLS starts in x0, we want

it to reach the situation x′ characterized by “wg < wx(B2) ≤
wg + wk”, letting the 2k − 1 given objects left untouched.
Since 2k − 1 = Ω(1) holds and each entry of the current
search point stays untouched with probability 1/n each gen-
eration, the 2k − 1 given objects stay untouched for O(n)
generations with probability

„
1− 2k − 1

n

«O(n)

= e−(2k−1)·O(1) = Ω(1),

i. e., with a positive and constant probability. Therefore, it is
sufficient to show, that enough small objects are transferred
into B2 within an expected number of O(n) generations; for
such a period of time a constant number of objects or a con-
stant number of components of the search point, resp., will
be left untouched with constant probability. The Markov
inequality will then provide us with the desired probability.
By regarding

wg < wx′(B2) ⇔ wg < α · wk

⇔ 1

k + 1
− ε

3k
< α · 1/(k + 1) + ε/3

n− k
we get

α > (n− k) · 1/(k + 1)− ε/(3k)
1/(k + 1) + ε/3

= (n− k) · (1− η)

for some particular η < 1. Therefore, transferring (n− k) ·
(1 − η/2) small objects into B2 is sufficient to fill up B2.
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Despite the 2k− 1 fixed objects, there are n− 2k+ 1 “free”
small objects and obviously

(n− k) · (1− η/2) < n− 2k + 1

ξ

for some particular ξ > 1 is correct if n is sufficiently large.
Hence, at every moment there are at least (n − 2k + 1) −
(n− 2k+1)/ξ = Ω(n) potential small objects, which can be
transferred into bin B2. Since the probability of a particular
1-bit-mutation, i. e., a transfer, is (kn)−1, the probability of
transferring any small object into B2 is bounded below by
Ω(1). As long as wx(B2) ≤ wg holds, no small object can
be removed from B2, since the volume of each other bin is
bounded below by wg . Therefore, x

′ will be reached within
an expected number of O(n) generations.
Let A be the number of small objects within bin B1 when

reaching x′. The volume of the first bin at this point of time
is 2 ·wg+A ·wk, and the volume of B2 obviously somewhere
between wg and wg +wk. Therefore, the difference between
them may be greater than wg , implying not having reached
x∗. After we have shown that within O(n) generations the
number of small objects within bin B1 drops to A/(k +
1) – leaving the 2k − 1 given objects untouched – and the
transferred Ak/(k + 1) small objects are distributed among
B2 to Bk “in a nice way”, we see that RLS has reached x

∗

with at least positive and constant probability.
Since more than the half of all small objects need to be

used to fill up B2 the volume of B2, ..., Bk is smaller than
the volume of B1, due to the fact that B1 contains two big
objects. Hence, a small object removed from B1 cannot get
back into B1. Since at least A/(k+1) objects are inside B1,
the probability of removing one small object from there is
at least A/((k+1)kn). RLS waits for this event an expected
number of kn(k + 1)/A generations and for all Ak/(k + 1)
transfers at most Ak/(k + 1) · kn(k + 1)/A = k2n = O(n)
generations in expectation. Lemma 3 ensures us, that within
O(n) generation these Ak/(k+1) objects distribute in such a
nice way fulfilling ∀(i, j) ∈ {2, ..., k}2 : |wx(Bi)−wx(Bj)| ≤
wk.
At this point of time the volume of each bin according to

the pigeonhole-principle is at least

wg +

—
Ak/(k + 1)

k − 1

	
≥ wg +

„
A · k

k2 − 1
− 1

«

(∗)
> wg +

A

k + 1
· wk.

Since reaching x′ took only O(n) generations, one can show
with coupon-collector’s-arguments (see [10]) that A = ω(1)
holds with probability 1−o(1). A simpler argumentation will
also do the trick. Imagine n different cards. Draw each time
uniformly at random one card and put it back. From former
analyses (e. g., [3]) we know that having seen all available n
cards takes an expected number of Ω(n log n) attempts. The
situation here is quite similar. The number of cards not seen
after O(n) attempts corresponds to A, since “seeing a card”
corresponds to “move an object out of B1”. If A were a
constant, O(n) attempts/generations would be sufficient to
see all cards: after O(n) attempts only a constant number
of unseen cards is left; after an expected number of O(n)
attempts a particular card is drawn. Therefore, an expected
number of O(n) attempts are enough to see all cards. This
is a contradiction to the stated Ω(n log n) attempts, hence,
A = ω(1) holds – even with probability 1− o(1).

With this information one can show the correctness of
Ak/(k2 − 1) − 1 > A/(k + 1) and therefore the inequality
(∗). Due to the fact that the volume of B1 is bounded above
by 2 · wg + A/(k + 1) · wk, the difference between B1 and
each binB2 to Bk is less than wg and condition (C2) fulfilled.
Therefore, the RLS reaches the desired search point x∗ with
at least constant probability and the claim follows.

A similar, but much less significant result can be shown
for the (1+1)EA on g and Wε. It states that the expected
number of generations the (1+1)EA needs to find a (2k/(k+
1)−ε)-approximation onWε is bounded below exponentially.
But the probability of an exponential running time can only
be bounded below by 2−Ω(n) at the moment, hence, it maybe
occurs “almost never”.
O(logw) bits are sufficient to encode a natural number w.

Hence, it is possible to encode a number of exponential size
by using only a polynomial number of bits. The bound for
the approximation time in Theorem 2 is only polynomial
if the sizes of the object volumes are polynomial, due to
the fact that it takes into account not only the number of
objects but also the volume of the objects. Therefore, it
is pseudo-polynomial (see [5]) and we want to improve it.
At the moment, we only succeed in doing this for k = 3. In
order to do this, we will introduce another fitness function h:
it measures the difference between the volume of the fullest
and the volume of the emptiest bin.

Theorem 4. Given ε > 0 RLS working on h with k =
3 finds a (7 + ε)-approximation with respect to f within
O(n2 log n) generations in expectation.

Proof. In our previous proofs we saw that moving ob-
jects from the currently fullest into the currently emptiest
bin means reducing the fitness value, until a certain approx-
imation ratio is reached. The main idea now is to show that
each object can only be transferred O(log n) times in this
way until the required approximation ratio is obtained. As-
suming each object can only be transferred O(log n) times
from the fullest into the emptiest bin and using the fact
that an appropriate transfer has the probability of at least
1/(kn), an expected number of O(n2 log n) generations are
sufficient for RLS to execute the at most O(n log n) trans-
fers. The only remaining thing to show is that each object
can only be transferred O(log n) times in the mentioned way.
In the following, we enumerate the bins according to their

volumes in non-increasing order with respect to any arbi-
trary search point y, i. e., wy(B

1
y) ≥ wy(B

2
y) ≥ wy(B

3
y). We

denote the current search point in generation t by xt. Let
us focus on a particular object i transferred from the fullest
bin B1

xt
into the emptiest bin B3

xt
at time t. Imagine this

object will be transferred again from B1
xt′ into B

3
xt′ at some

time t′ > t. Now we will justify that the discrepancy be-
tween the currently fullest and the currently emptiest bin
– and therefore the fitness value – decreased by a constant
factor going from t to t′. Assuming that it decreases each
time a object is transferred in this way by the factor 1+δ, it
will be below (6+ ε) ·w1 after log1+δ(n/(6+ ε)) times, since
w ≤ n · w1 holds. Due to the fact that the volume of the
emptiest bin is at most the optimal f -value, this is a search
point giving the desired approximation ratio.
Have a look at object i in B1

xt
, assuming it will be trans-

ferred into B3
xt
within generation t. Note, that by using h

objects can only be transferred into emptier bins. Hence, in
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order to get i back into the fullest bin at some time t′ > t
again, i. e., into B1

xt′ , B
3
xt
has to be filled up to become B1

xt′ .

By transferring objects from bin B into B′, these bins
only can “balance” their volumes. Starting with a volume
of v in B and v′ in B′, as B′ gets the fuller of both bins,
its volume is bounded from above by (v+ v′)/2+w1. Since
we are interested in decreasing the volume of B1

xt
, we have

a look at the worst-case, first “balancing” B2
xt
and B3

xt
and

then B1
xt
and B2

xt
. We are only interested in the discrepancy

between these bins and assume w. l. o. g. B3
xt
to be empty,

while B1
xt
contains the volume v and B2

xt
v′. Now, according

to our previous argumentation, the volume of B1
xt′ (after the

“exchanges”) is limited by

v + (v′ + 0)/2 + w1

2
+w1 ≤ v

2
+
v

4
+
w1

2
+w1 =

3

4
·v+ 3

2
·w1.

The volume of the fullest bin is at most v greater than the
volume of the lowest bin – remember we are interested in
discrepancies of the volumes. The volume of the lowest bin
is at any time at most as big as the optimal makespan.
Therefore, the requested approximation ratio would already
be reached if v ≤ (6 + ε) · w1 holds. Hence, assuming v >
(6 + ε) · w1, we can estimate this by

3

4
· v + 3

2
· v

6 + ε
=
24 + 3ε

24 + 4ε
· v = v

1 + δ
.

Thus we see, that the discrepancy between B1
xt
and B3

xt

has diminished by a constant factor 1 + δ compared to the
discrepancy between B1

xt′ and B
3
xt′ . This is rounding off the

proof.

4. AVERAGE-CASE ANALYSIS
Theorems 1, 2 and 4 hold for an arbitrary instance for the

k-Partition-Problem. But, if we specify the class of input
instances, we can improve our results for the (1+1)EA on
them. The class of inputs for the k-Partition-Problem we
will look at can easily be described: the volumes for the n
objects are drawn independently and uniformly at random
from the interval [0, 1]. Frenk and Rinnooy Kan [4] were
able to prove that the approximation ratio of the LPT rule –
greedily putting the objects in non-increasing order into the
currently emptiest bin – is in the magnitude of O(log n/n)
on this input model and, therefore, converges to optimality
as n grows large. Witt showed in [15] nearly the same result
for the (1+1)EA and k = 2. He stated that after a poly-
nomial number of generations the discrepancy between the
two bins is in the magnitude of O(log n/n) with probability
1−O(1/nc) for any constant c ≥ 1.
Therefore, we will take a look at the behavior of the

(1+1)EA on the k-Partition-Problem for k = 3.

Lemma 4. Let n ∈ N and h be defined as above for an
instance of the 3-Partition-Problem. After O(wn log n/wn)
generations both introduced RSHs working on h will find a
search point x fulfilling h(x) ≤ 2 ·w1 with probability at least
1−O(1/nc) for an arbitrary constant c ≥ 1.

Proof. We will use the fitness levels Li := {x|w − i ·
wn < h(x) ≤ w − (i − 1) · wn} and enumerate the bins
in the following by their volumes in non-increasing order,
i. e., wx(B

1
x) ≥ wx(B

2
x) ≥ wx(B

3
x). Assuming wx(B

1
x) −

wx(B
3
x) = h(x) > 2w1 for the current search point x, the

discrepancy wx(B
1
x)−wx(B

2
x) or wx(B

2
x)−wx(B

3
x) exceeds

w1. Therefore, an object transferred from B1
x to B

3
x reduces

the h-value at least by its volume. Hence, the RSH leaves
the current fitness level. Since at most w/wn fitness levels
have to be left and the probabilities of the particular 1-bit-
mutations sum up to at least 1/(ekn), the levels have been
left after an expected number of w/wn · ekn generations.
Let A be the event that the requested approximation ra-

tio is obtained and let Λ denote the actual number of fitness
levels to be left, i. e., 1 ≤ A ≤ w/wn. Define Xi as the indi-
cator of the event that an above mentioned 1-bit-mutation
occurs within the i-th generation, i. e., Xi = 1 iff such a 1-
bit-mutation occurs. Hence, Prob(Xi = 1) ≥ 1/(ekn) holds

and by defining G := 8eck(log n)w/wn and X :=
PG

i=1Xi

we get

Prob(Λ) ≥ Prob(X ≥ A)
≥ Prob(X ≥ (1− 1/2) · 8c ·A · log n · w/wn).

Since the mutations done in Step 2 of the introduced RSH
are independent, E(X) ≥ 8c(log n)w/wn holds for the mean-
value and therefore applying Chernoff bounds (e. g., [10])
reveals

Prob(Λ) ≥ 1− Prob(X < (1− 1/2) · E(X) > 1− e−c·A·log n

and the claim follows.

The following technical lemma will become useful soon.

Lemma 5. Given a subset C � {1, ..., k} of all bins, there
either exists a pair (i, i+ 1), where object i is in a bin of C
and i+ 1 is not, or object n is in a bin of C.

Proof. We will present a constructive proof for our claim.
Have a look at the following algorithm.

• Start with the biggest object in a bin of C, namely i.

• If i + 1 is in a bin of C̄, return the pair (i, i + 1) else
repeat with i+ 1 instead of i until i = n.

Obviously, this algorithm finds such a pair or object n is in
a bin of C.

Theorem 5. Let n ∈ N and h be defined as above, while
the volumes w1, ..., wn are drawn uniformly at random from
[0, 1]. After O(nc+4 log n) generations of the (1+1)EA the
discrepancy between the fullest and the emptiest bin is boun-
ded above by O(log n/n) with probability 1−O(1/nc) for an
arbitrary constant c ≥ 1. Moreover, the expected h-value af-
ter O(n5 log n) generations is bounded above by O(log n/n).

Proof. First, we are going to show that the discrepancy
between the fullest and emptiest bin, i. e., the fitness value,
is bounded above by 2 after O(n3 log n) steps with probabil-
ity 1−O(1/nc). To achieve this we use Lemma 4. In order to
be able to apply Lemma 4 we need an upper bound on w and
a lower bound on wn, respectively. Obviously, w ≤ n holds.
The volumes of the objects are now drawn at random. To
emphasize this, we use capitals for their notation and define
Wi as the random variable describing the volume of the i-th
largest object. Theory concerning order-statistics (e. g., [2])
assures Prob(Wi −Wi+1 ≥ t) = Prob(Wn ≥ t) = (1− t)n is
correct. All further assumptions about the volumes we are
going to make, hold at least with probability 1−O(1/nc+1).
Since we are going to make O(n) independent assumptions,
they conjointly hold with probability 1 − O(1/nc) as re-
quired. By defining t∗ := n−c−2 we see that Wn ≥ t∗ =

577



Ω(n−c−2) and Wi −Wi+1 ≥ t∗ = Ω(n−c−2) is correct with
appropriate probability. Now, Lemma 4 implies a discrep-
ancy of at most 2 after O(n3 log n) generations.
Assuming its espousal, we have to show that the discrep-

ancy drops to O(log n/n) within O(nc+4 log n) generations
with probability 1 − O(1/nc). To be able to use methods
introduced in the previous sections, we would have to guar-
antee the existence of objects with a volume of at most
O(log n/n) within the fullest bin. This could happen to be
very hard, since W1 = Ω(1) is fulfilled with high probability.
But exchanging two objects i and j between two bins, can be
interpreted as transferring an object with volume Wi −Wj .
Therefore, it could be sufficient to bound these discrepan-
cies from above by O(log n/n). Since the (1+1)EA is able to
perform 2-bit-mutations with “good” probability, we take a
closer look at these exchanges.
We enumerate the bins according to their volumes non-

increasingly ordered. By defining l∗ := (c + 1)·(ln n)/n,
Wi −Wi+1 ≤ l∗ and Wn ≤ l∗ are correct with a sufficiently
high probability. As long as h(x) > 2l∗ holds for the current
search point x, the discrepancy between B1

x and B
2
x or B

2
x

and B3
x exceeds l

∗ due to the pigeonhole-principle. We will
take care of the first mentioned case first. By defining C :=
{1} Lemma 5 provides us with a pair (i, i+ 1) of objects or
object n is within bin B1

x. A transfer of n into bin B3
x or an

exchange of i and i+1, respectively, will reduce the volume
of B1

x by at least Wn ≥ t∗ = Ω(n−c−2) or Wi − Wi+1 ≥
t∗ = Ω(n−c−2), respectively. As our assumptions on the
volumes hold, it will not be diminished by more than l∗.
Since the discrepancy between B1

x and B2
x is greater than

l∗, the h-value reduces at least by t∗ = Ω(n−c−2).
On the other hand, if the second case occurs, i. e., the

discrepancy of B2
x and B

3
x exceeds l

∗, the same method can
be used, redefining C := {1, 2}, due to the fact that the
volume of B3

x increases by at least t∗ = Ω(n−c−2) and at
most l∗.
Therefore, the (1+1)EA is able to reduce the h-value by at

least t∗ = Ω(n−c−2) by transferring at most two objects, i. e.,
performing a particular at most 2-bit-mutation. The proba-
bility for this to happen is bounded below by (kn)−2. Hence,
after at most 2/t∗ = O(nc+2) – remember we started with
a discrepancy of at most 2 – reductions the (1+1)EA has
found a appropriate search point. Due to Chernoff bounds,
this is going to happen after O(n4+c log n) generations with
probability 1−O(1/nc). This gives the first claim.
To prove the claim regarding the expected discrepancy we

substitute c = 2 in Lemma 4. The discrepancy between B1
x

and B3
x is trivially bounded above by n and with a proba-

bility of at most O(n−2) it is not bounded above by 2 after
O(n5 log n) generations. This will yield a term of O(1/n)
to the expected discrepancy in that case. By using c = 1
in argumentation above, we see that with probability at
most O(1/n) the discrepancy after O(n5 log n) generations
is bounded above by at most 2; again yielding a term of
O(1/n) to the expected discrepancy. This finally proves our
claim.

5. CONCLUSIONS
Although evolutionary algorithms are non-specialized, gen-

eral purpose, randomized search heuristics, they are able to
deliver appropriate approximative solutions in acceptable
running time. This holds for “simple” problems (see [3]
and [6]) as well as for some sort of NP-hard problems, like

the k-Partition-Problem. They sometimes can even com-
pete with problem-specialized algorithms, e. g., the LPT
rule. We presented an analysis proving an expected pseudo-
polynomial running time to create a (2k/(k+1))-approxima-
tion on this problem using the (1+1)EA and RLS. The usage
of a different proof method reveals an O(n2 log n) bound for
a (7 + ε)-approximation on the 3-Partition-Problem. On a
common input distribution the (1+1)EA is even capable of
finding a solution for the 3-Partition-Problem with a discrep-
ancy of at most O(log n/n), i. e., convergent to optimality,
in polynomial time with high probability. Nevertheless, the
(1+1)EA and RLS take exponential expected running time
to find a (2k/(k + 1) − ε)-approximation in the worst-case
for a constant ε > 0.
Hopefully, we did a step toward the analysis of the average-

case behavior of evolutionary algorithms on important prob-
lems.
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